Reduced‐order modeling framework using two‐level neural networks
نویسندگان
چکیده
Abstract Established reduced‐order modeling (ROM) methods, for instance, Galerkin‐projection, approximate the solution by linearly projecting high‐dimensional spaces to a lower‐dimensional space spanned reduced basis. However, accuracy of these methods may be insufficient complex and multiscale simulations due restriction linear space. Alternatively, autoencoders (AEs) can used nonlinear dimensionality reduction. We combine reduction techniques with time series prediction build data‐driven ROMs. The presented framework consists two‐level neural networks. is nonlinearly compressed in first level using encoder function AE. Subsequently, temporal evolution latent vector predicted second level. original easily reconstructed decoder In comparison projection‐based ROMs, example, proper orthogonal decomposition (POD) Galerkin projection, this allows naturally include parameters without interpolation demonstrate on two‐dimensional flow field simulation around circular bodies parameterized inlet fluid velocity.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملModeling and zoning of land subsidence in the southwest of Tehran using artificial neural networks
The earth's surface, due to its natural conditions and its structure is always changing and reshaping. One of the created deformations is the land subsidence. This is the most dangerous events which can be seen in most urban areas especially in the agricultural plains today. This study aims at zoning land subsidence and recognition of geometrical factors in southwest of Tehran. To estimate and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings in applied mathematics & mechanics
سال: 2023
ISSN: ['1617-7061']
DOI: https://doi.org/10.1002/pamm.202300061